Complex Numbers I Cheat Sheet

Complex Numbers and Complex Algebra

Complex numbers are a superset of the real numbers. Since being introduced to the modern number system, they have proved useful in many fields - including quantum mechanics and electronics. They serve as system, they have proved usefur in many mields - a useful mathematical tool to model complicated situations and behaviours.

Imaginary Numbers

One way we can easily find solutions for quadratic equations of the form
(where $a, b, c \in \mathbb{R}$) is by applying the quadratic formula. $\begin{aligned} & a x^{2}+b x+c=0\end{aligned}$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

However, when the discriminant, ($b^{2}-4 a c$), is less than zero, the equation has no real solutions - as the square root of a negative number is being taken. Introducing imaginary numbers allows us to represent the
complex solutions of the equation.

- In Cartesian form, complex numbers are represented as $z=a+b i$, where $a, b \in \mathbb{R}$

They consist of a real part, $R e(z)=a$, and an imaginary part, $I m(z)=b$.

- is the letter used to denote the unit imaginary number and is defined by $i=\sqrt{-1}$.

Example 1: Express $\sqrt{-49}$ as an imaginary number in the form $b i$, where $b \in \mathbb{R}$.
Use the surd rule $\sqrt{a b}=\sqrt{a} \sqrt{b}$ to rewrite $\quad \sqrt{-49}=(\sqrt{49})(\sqrt{-1})$
$\sqrt{-49}$ so that $\sqrt{-1}$ is factored out.

Apply the definition of i to simplify further.	$\sqrt{-49}$
$=(\sqrt{49})(\sqrt{-1})=(\sqrt{49}) i=7 i$	

Complex Arithmetic

Complex addition is similar to vector addition. Similar to how we add the x and y components of a vector separately, we must add the real and imaginary parts separately.

Example 2: Simplify $z=(11-2 i)-(4+2 i)$. Give your answer in the form $a+b i$, where $a, b \in \mathbb{R}$.
Add the real parts together.
$11-4=7$
Add the imaginary parts together.

$11-4$	$=7$
$-2 i-2 i$	$=-4 i$
$z=7-4 i$	

Complex Multiplication

Similar to complex addition and subtraction, complex multiplication is identical to the usual real number multiplication except for a key difference; when two imaginary numbers are multiplied together, a real number is produced since $i^{2}=(\sqrt{-1})(\sqrt{-1})=-1$.
Example 3: Expand $(7+2 i)(5-i)$. Give your answer in the form $a+b i$, where $a, b \in \mathbb{R}$.
Expand the brackets.
$(7+2 i)(5-i)=35-7 i+10 i-2 i^{2}$
Apply the $i^{2}=-1$ definition.
$35-7 i+10 i-2 i^{2}=35-7 i+10 i-2(-1)$
$=35-7 i+10 i+2$
$35-7 i+10 i+2=37+3 i$
For questions dealing with i to the power of an exponent, it is useful to memorise the results $i^{3}=-i$ and For questions dealing with to the posion.
$i^{4}=1$ in order to simplify the expression.
Example 4: Find i^{100} and i^{75}
Use laws of indices of separate out i^{4}.
Use laws of indices to again factor out an $i^{\text {i }}$
Use laws
term.
$i^{100}=i^{4(25)}=(1)^{25}=1$ $i^{75}=i^{72+3}=(i)^{72} \times i^{3}=i^{4(18)} \times-i$

Complex Conjugation
A given complex number has an associated complex conjugate. The complex conjugate of $z=a+b i$ is given by:

If α and β are roots of a quadratic equation, we can write the equation as

Example 5: Using the definition of the complex coniugate, show that $Z Z^{*}=a^{2}+b^{2}$.

First write down the definition of the complex conjugate z^{*}.	If $z=a+b i$, then $z^{*}=a-b i$
Multiply z and z^{*} together.	$\begin{aligned} z z^{*} & =(a+b i)(a-b i) \\ & =a^{2}+b^{2} i-b^{2} i-b^{2}{ }^{2} \\ & =a^{2} b^{2} i^{2} \\ & =a^{2}-b^{2}(-1) \\ & =a^{2}+b^{2} \end{aligned}$

Example 6: Find the complex number z such that $z+3 z^{*}=2+2 i$. Give your answer in the form $a+b i$, where $a, b \in \mathbb{R}$.

Write down the general Cartesian forms of a complex number and its conjugate.	$z=a+b i, \quad z^{*}=a-b i$
Substitute these into the given equation.	$\begin{gathered} (a+b i)+3(a-b i)=2+2 i \\ \Rightarrow a+b i+3 a-3 b i=2+2 i \\ \Rightarrow 4 a-2 b i=2+2 i \end{gathered}$
Equate real and imaginary parts on both sides.	$\begin{aligned} 4 a & =2 \Rightarrow a=\frac{2}{4}=\frac{1}{2} \\ -2 b & =2 \Rightarrow b=\frac{2}{2}=-1 \end{aligned}$
Write down z.	$z=\frac{1}{2}-i$

Complex Division

When dividing two complex numbers by each other, it is necessary to make use of the complex conjugate in order to realise the denominator of the fraction.
Example 7 : Given $z=4+3 i$ and $w=2+2 i$, find $\frac{z}{w}$. Give your answer in the form $a+b i$, where $a, b \in \mathbb{R}$.

Write down the complex conjugate of w.	If $w=2+2 i$, then $w^{*}=2-2 i$
Multiply both the numerator and denominator of the fraction $\mathrm{b} w^{*}$.	$\frac{z}{w}==\frac{4+3 i}{2+2 i} \times \frac{2-2 i}{2-2 i}=\frac{(4+3 i)(2-2 i)}{(2+2 i)(2-2 i)}$ Simplify.
$\frac{(4+3 i)(2-2 i)}{(2+2 i)(2-2 i)}=\frac{8-8 i+6 i-6 i^{2}}{4-4 i+4 i-4 i^{2}}$ $=\frac{8-2 i-6(-1)}{4-4(-1)}=\frac{14-2 i}{8}$ $=\frac{7}{4}-\frac{1}{4} i$	

Solving Equations with Complex Roots

Solving Quadratic Equations with Complex Roots

Complex roots of a quadratic equation always arise in conjugate pairs. If z is one root of a quadratic equation, then z^{*} is the other root.
Example 8: Solve $z^{2}+3 z+3=0$ for z. Give your answer in the form $a \pm b i$, where $a, b \in \mathbb{R}$.
Solving using the quadratic formula.
Or solve by completing the square.

$$
\begin{gathered}
a=1, b=3, c=3 \\
z=\frac{-3 \pm \sqrt{(3)^{2}-4(1)(3)}}{2(1)}=\frac{-3 \pm \sqrt{9-12}}{2} \\
=-\frac{3}{2} \pm \frac{\sqrt{-3}}{2} \Rightarrow z=-\frac{3}{2} \pm \frac{\sqrt{3}}{2} i \\
z^{2}+3 z+3=0 \Rightarrow\left(z+\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}+3=0 \\
\Rightarrow\left(z+\frac{3}{2}\right)^{2}-\frac{9}{4}+3=0 \Rightarrow\left(z+\frac{3}{2}\right)^{2}+\frac{3}{4}=0 \\
\Rightarrow\left(z+\frac{3}{2}\right)^{2}=-\frac{3}{4} \Rightarrow\left(z+\frac{3}{2}\right)= \pm \sqrt{-\frac{3}{4}} \\
\Rightarrow z=-\frac{3}{2} \pm \frac{\sqrt{-3}}{\sqrt{4}} \Rightarrow z=-\frac{3}{2} \pm \frac{\sqrt{3}}{2} i
\end{gathered}
$$

$(z-\alpha)(z-\beta)=0$
$(z-\alpha)(z-\beta)=0$
$z^{2}-(\alpha+\beta) z+\alpha \beta=0$
Example 9: Given that $z=3+i$ is a root of the quadratic equation $z^{2}+a z+b=0$ (where $a, b \in \mathbb{R}$), find the values a and b

Write down both roots of the equation.	$\alpha=z=3+i, \quad \beta=z^{*}=3-i$
Substitute α and β into $z^{2}-(\alpha+\beta) z+\alpha \beta=0$.	$\alpha+\beta=(3+i)+(3-i)=6$
	$\alpha \beta=z z^{*}=(3)^{2}+(1)^{2}=10$
$z^{2}-6 z+10=0$	
$a=-6, b=10$	

Solving Cubic and Quartic Equations with Complex Roots

A cubic equation of the form $a x^{3}+b x^{2}+c x+d=0$ (where $a, b, c, d \in \mathbb{R}$) will have either a pair of complex roots and a real root, or three real roots.
A quartic equation of the form $a x^{4}+b x^{3}+c x^{2}+d x+e=0($ where $a, b, c, d, e \in \mathbb{R})$ will have either two pairs of complex roots, a pair of complex roots and two real roots, or four real roots.

Exam questions will typically give a root of the equation and so to find the remaining roots we have to us the factor theorem and then solve the remaining quadratic.
Example 10: Given that 7 is a root of the cubic equation $z^{3}-11 z^{2}+41 z-91=0$, find the other two roots. Give your answers in the form $a+b i$, where $a, b \in \mathbb{R}$.

Use the factor theorem.	Since $z=7$ is a solution, $(z-7)$ must be a factor
Factor out $(z-7)$ from the cubic using long division.	$(z-7)\left(z^{2}-4 z+13\right)$
Use the quadratic equation to solve the quadratic for the other two roots.	$\begin{gathered} a=1, b=-4, c=13 \\ z=\frac{4 \pm \sqrt{(-4)^{2}-4(1)(13)}}{2}=\frac{4 \pm \sqrt{-36}}{2} \\ =2 \pm \frac{\sqrt{36}}{2} i=2 \pm 3 i \\ z=7, \quad z=2+3 i, \quad z=2-3 i \end{gathered}$

Example 11: Given that $1+i$ is a root of the quartic equation $z^{4}-16 z^{3}+128 z^{2}-224 z+196=0$, find the other three roots.
Write down the other root of the quartic by
Use $z^{2}-(\alpha+\beta) z+\alpha \beta$ com conjugates.
If $1+i$ is a root, then $1-i$ is also a root
$\alpha=1+i, \quad \beta=1-i$
$\alpha+\beta=(1+i)+(1-i)=2$
$\alpha \beta=(1+i)(1-i)=1-i^{2}=1+1=2$
Factor out the quadratic from the quartic using
long division.
Use the quadratic equation to solve the
emaining quadratic for the other 2 root
$z^{4}-16 z^{3}+128 z^{2}-224 z+196$
$=\left(z^{2}-2 z+2\right)\left(z^{2}-14 z+98\right)$
$a=1, b=-14, c=98$
$z=14 \pm \sqrt{(-14)^{2}-4(1)(98)}$

$$
=\frac{14 \pm \sqrt{-196}}{2}=7 \pm \frac{\sqrt{196}}{2} i=7 \pm 7 i
$$

