Complex Numbers I Cheat Sheet

Complex Numbers and Complex Algebra

Complex numbers are a superset of the real numbers. Since being introduced to the modern number system, they have proved useful in many fields - including guantum mechanics and electronics. They serve as a useful mathematical tool to model complicated situations and behaviours.

Imaginary Numbers

One way we can easily find solutions for quadratic equations of the form; $ax^2 + bx + c = 0$

(where $a, b, c \in \mathbb{R}$) is by applying the quadratic formula.

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{ac}$ 2a

However, when the discriminant, $(b^2 - 4ac)$, is less than zero, the equation has no real solutions - as the square root of a negative number is being taken. Introducing imaginary numbers allows us to represent the complex solutions of the equation.

- In Cartesian form, complex numbers are represented as z = a + bi, where $a, b \in \mathbb{R}$. They consist of a real part, Re(z) = a, and an imaginary part, Im(z) = b.
- *i* is the letter used to denote the unit imaginary number and is defined by $i = \sqrt{-1}$.

Example 1: Express $\sqrt{-49}$ as an imaginary number in the form bi, where $b \in \mathbb{R}$.

Use the surd rule $\sqrt{ab} = \sqrt{a}\sqrt{b}$ to rewrite $\sqrt{-49}$ so that $\sqrt{-1}$ is factored out.	$\sqrt{-49} = (\sqrt{49})(\sqrt{-1})$
Apply the definition of <i>i</i> to simplify further.	$\sqrt{-49} = (\sqrt{49})(\sqrt{-1}) = (\sqrt{49})i = 7i$

Complex Arithmetic

Complex addition is similar to vector addition. Similar to how we add the x and y components of a vector separately, we must add the real and imaginary parts separately.

Example 2: Simplify z = (11 - 2i) - (4 + 2i). Give your answer in the form a + bi, where $a, b \in \mathbb{R}$.

Add the real parts together.	11 - 4 = 7
Add the imaginary parts together.	-2i - 2i = -4i
Combine the real and imaginary results.	z = 7 - 4i

Complex Multiplication

Similar to complex addition and subtraction, complex multiplication is identical to the usual real number multiplication except for a key difference; when two imaginary numbers are multiplied together, a real number is produced since $i^2 = (\sqrt{-1})(\sqrt{-1}) = -1$.

Example 3: Expand (7 + 2i)(5 - i). Give your answer in the form a + bi, where $a, b \in \mathbb{R}$.

Expand the brackets.	$(7+2i)(5-i) = 35 - 7i + 10i - 2i^2$
Apply the $i^2 = -1$ definition.	$35 - 7i + 10i - 2i^{2} = 35 - 7i + 10i - 2(-1)$ = 35 - 7i + 10i + 2
Simplify the expression.	35 - 7i + 10i + 2 = 37 + 3i

For questions dealing with i to the power of an exponent, it is useful to memorise the results $i^3 = -i$ and $i^4 = 1$ in order to simplify the expression.

Example 4: Find i^{100} and i^{75} .

Use laws of indices of separate out i^4 .	$i^{100} = i^{4(25)} = (1)^{25} = 1$
Use laws of indices to again factor out an i^4	$i^{75} = i^{72+3} = (i)^{72} \times i^3 = i^{4(18)} \times -i$
term.	$=1 \times -i = -i$

Complex Conjugation

A given complex number has an associated complex conjugate. The complex conjugate of z = a + bi is given by:

 $z^* = a - bi$

Example 5: Using the definition of the complex conjugate, show that $zz^* = a^2 + b^2$.

First write down the definition of the complex conjugate z^* .	If $z = a + bi$, then $z^* = a - bi$
Multiply z and z [*] together.	$zz^* = (a + bi)(a - bi)$ = $a^2 + b^2i - b^2i - b^2i^2$ = $a^2 - b^2i^2$ = $a^2 - b^2(-1)$ = $a^2 + b^2$

Example 6: Find the complex number z such that $z + 3z^* = 2 + 2i$. Give your answer in the form a + bi, where $a, b \in \mathbb{R}$.

Write down the general Cartesian forms of a complex number and its conjugate.	$z = a + bi$, $z^* = a - bi$
Substitute these into the given equation.	(a+bi) + 3(a-bi) = 2 + 2i $\Rightarrow a+bi + 3a - 3bi = 2 + 2i$ $\Rightarrow 4a - 2bi = 2 + 2i$
Equate real and imaginary parts on both sides.	$4a = 2 \Rightarrow a = \frac{2}{4} = \frac{1}{2}$ $-2b = 2 \Rightarrow b = \frac{2}{-2} = -1$
Write down z.	$z = \frac{1}{2} - i$

Complex Division

When dividing two complex numbers by each other, it is necessary to make use of the complex conjugate in order to realise the denominator of the fraction.

Example 7: Given z = 4 + 3i and w = 2 + 2i, find $\frac{z}{w}$. Give your answer in the form a + bi, where $a, b \in \mathbb{R}$.

Write down the complex conjugate of <i>w</i> .	If $w = 2 + 2i$, then $w^* = 2 - 2i$
Multiply both the numerator and denominator of the fraction b w^* .	$\frac{z}{w} = = \frac{4+3i}{2+2i} \times \frac{2-2i}{2-2i} = \frac{(4+3i)(2-2i)}{(2+2i)(2-2i)}$
Simplify.	$\frac{(4+3i)(2-2i)}{(2+2i)(2-2i)} = \frac{8-8i+6i-6i^2}{4-4i+4i-4i^2}$ $= \frac{8-2i-6(-1)}{4-4(-1)} = \frac{14-2i}{8}$ $= \frac{7}{4} - \frac{1}{4}i$

Solving Equations with Complex Roots

Solving Quadratic Equations with Complex Roots

Complex roots of a quadratic equation always arise in conjugate pairs. If z is one root of a quadratic equation, then z^* is the other root.

Example 8: Solve $z^2 + 3z + 3 = 0$ for z. Give your answer in the form $a \pm bi$, where $a, b \in \mathbb{R}$.

Solving using the quadratic formula.	$z = \frac{a = 1, b = 3, c = 3}{2(3)^2 - 4(1)(3)} = \frac{-3 \pm \sqrt{9 - 12}}{2}$ $= -\frac{3}{2} \pm \frac{\sqrt{-3}}{2} \Rightarrow z = -\frac{3}{2} \pm \frac{\sqrt{3}}{2}i$
Or solve by completing the square.	$z^{2} + 3z + 3 = 0 \Rightarrow \left(z + \frac{3}{2}\right)^{2} - \left(\frac{3}{2}\right)^{2} + 3 = 0$ $\Rightarrow \left(z + \frac{3}{2}\right)^{2} - \frac{9}{4} + 3 = 0 \Rightarrow \left(z + \frac{3}{2}\right)^{2} + \frac{3}{4} = 0$ $\Rightarrow \left(z + \frac{3}{2}\right)^{2} = -\frac{3}{4} \Rightarrow \left(z + \frac{3}{2}\right) = \pm \sqrt{-\frac{3}{4}}$ $\Rightarrow z = -\frac{3}{2} \pm \frac{\sqrt{-3}}{\sqrt{4}} \Rightarrow z = -\frac{3}{2} \pm \frac{\sqrt{3}}{2}i$

 \bigcirc

If α and β are roots of a quadratic equation, we can write the equation as $(z-\alpha)(z-\beta)=0$

or

the values a and b

Write down both roots of Substitute α and β into z

Solving Cubic and Quartic Equations with Complex Roots

complex roots and a real root, or three real roots.

Exam questions will typically give a root of the equation and so to find the remaining roots we have to use the factor theorem and then solve the remaining quadratic.

```
Use the factor theorem
Factor out (z - 7) from th
division.
Use the quadratic equation
quadratic for the other tw
```

Example 11: Given that 1 + find the other three roots.

Write down the other root using knowledge of compl Use $z^2 - (\alpha + \beta)z + \alpha\beta$

Factor out the quadratic fr long division. Use the quadratic equation

remaining quadratic for th

www.pmt.education **D** PMTEducation

AQA A Level Further Maths Core

 $z^2 - (\alpha + \beta)z + \alpha\beta = 0$

Example 9: Given that z = 3 + i is a root of the quadratic equation $z^2 + az + b = 0$ (where $a, b \in \mathbb{R}$), find

the equation.	$\alpha = z = 3 + i, \qquad \beta = z^* = 3 - i$
$z^{2} - (\alpha + \beta)z + \alpha\beta = 0.$	$\alpha + \beta = (3 + i) + (3 - i) = 6$ $\alpha\beta = zz^* = (3)^2 + (1)^2 = 10$ $z^2 - 6z + 10 = 0$ $\alpha = -6, b = 10$

A cubic equation of the form $ax^3 + bx^2 + cx + d = 0$ (where $a, b, c, d \in \mathbb{R}$) will have either a pair of

A quartic equation of the form $ax^4 + bx^3 + cx^2 + dx + e = 0$ (where *a*, *b*, *c*, *d*, $e \in \mathbb{R}$) will have either two pairs of complex roots, a pair of complex roots and two real roots, or four real roots.

Example 10: Given that 7 is a root of the cubic equation $z^3 - 11z^2 + 41z - 91 = 0$, find the other two roots. Give your answers in the form a + bi, where $a, b \in \mathbb{R}$.

	Since $z = 7$ is a solution, $(z - 7)$ must be a factor
ne cubic using long	$(z-7)(z^2-4z+13)$
n to solve the o roots.	$z = \frac{4 \pm \sqrt{(-4)^2 - 4(1)(13)}}{2} = \frac{4 \pm \sqrt{-36}}{2}$ $= 2 \pm \frac{\sqrt{36}}{2}i = 2 \pm 3i$ $z = 7, z = 2 + 3i, z = 2 - 3i$
<i>i</i> is a root of the quartic equation $z^4 - 16z^3 + 128z^2 - 224z + 196 = 0$.	

t of the quartic by ex conjugates.	If $1 + i$ is a root, then $1 - i$ is also a root
to obtain a quadratic.	$ \begin{aligned} \alpha &= 1+i, \qquad \beta = 1-i \\ \alpha + \beta &= (1+i) + (1-i) = 2 \\ \alpha \beta &= (1+i)(1-i) = 1-i^2 = 1+1 = 2 \\ z^2 - 2z + 2 \end{aligned} $
rom the quartic using	$z^4 - 16z^3 + 128z^2 - 224z + 196$ = $(z^2 - 2z + 2)(z^2 - 14z + 98)$
n to solve the le other 2 roots.	$a = 1, b = -14, c = 98$ $z = \frac{14 \pm \sqrt{(-14)^2 - 4(1)(98)}}{2}$ $= \frac{14 \pm \sqrt{-196}}{2} = 7 \pm \frac{\sqrt{196}}{2}i = 7 \pm 7i$ $z = 1 \pm i, \qquad z = 7 \pm 7i$

